A.I. News

  • Robotics engineers have worked for decades and invested many millions of research dollars in attempts to create a robot that can walk or run as well as an animal. And yet, it remains the case that many animals are capable of feats that would be impossible for robots that exist today.
  • A computer game helped upper secondary school students become better at distinguishing between reliable and misleading news.
  • Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.
  • A team of computer scientists working on two different problems — how to quickly detect damaged buildings in crisis zones and how to accurately estimate the size of bird flocks — recently announced an AI framework that can do both. The framework, called DISCount, blends the speed and massive data-crunching power of artificial intelligence with the reliability of human analysis to quickly deliver reliable estimates that can quickly pinpoint and count specific features from very large collections of images.
  • Star Trek's Holodeck is no longer just science fiction. Using AI, engineers have created a tool that can generate 3D environments, prompted by everyday language.
  • A new technique can more effectively perform a safety check on an AI chatbot. Researchers enabled their model to prompt a chatbot to generate toxic responses, which are used to prevent the chatbot from giving hateful or harmful answers when deployed.
  • Engineers designed modular, spring-like devices to maximize the work of live muscle fibers so they can be harnessed to power biohybrid robots.
  • In a bid to restore privacy, researchers have created a new approach to designing cameras that process and scramble visual information before it is digitized so that it becomes obscured to the point of anonymity.
  • A research team has addressed the long-standing challenge of creating artificial olfactory sensors with arrays of diverse high-performance gas sensors. Their newly developed biomimetic olfactory chips (BOC) are able to integrate nanotube sensor arrays on nanoporous substrates with up to 10,000 individually addressable gas sensors per chip, a configuration that is similar to how olfaction works for humans and other animals.
  • What would you do if you walked up to a robot with a human-like head and it smiled at you first? You'd likely smile back and perhaps feel the two of you were genuinely interacting. But how does a robot know how to do this? Or a better question, how does it know to get you to smile back?

Share

FREE QUOTE